Convolution Approach for Value at Risk Estimation

Author:

Siu Yam Wing1ORCID

Affiliation:

1. Department of Economics and Finance, The Hang Seng University of Hong Kong, Siu Lek Yuen, Shatin, N.T., Hong Kong

Abstract

Formally, Value at risk (VaR) measures the worst expected loss over a given horizon under normal market conditions at a given confidence level. Very often, daily data are used to compute VaR and scale up to the required time horizon with the square root of time adjustment. This gives rise to an important question when we perform VaR estimation: whether the values of VaR (i.e., “loss”) should be interpreted as (1) exactly on [Formula: see text]th day and (2) within i days. This research attempted to answer the above question using actual data of SPX and HSI. It was found that, in determining the proportionality of the values, (i.e., slopes) of VaR versus the holding period, the slopes for within i days are generally greater than those for exactly on [Formula: see text]th day. This has great implications to risk managers as it would be inappropriate to simply scale up the one-day volatility by multiplying the square root of time (or the number of days) ahead to determine the risk over a longer horizon of [Formula: see text] days. The evolution of log return distribution over time using actual data has also been performed empirically. It provides a better understanding than a series of VaR values. However, the number of samples in actual data is limited. There may not be enough data to draw reliable observation after it has been evolved a few times. Numerical simulation can help solve the problem by generating, say, one million log returns. It has been used to provide many insights as to how the distribution evolves over time and reveals an interesting dynamic of minimum cumulative returns. Numerical simulation is time consuming for performing evolution of distribution. The convolution approach provides an efficient way to analyze the evolution of the whole data distribution that encompasses VaR and others. The convolution approach with modified/scaled input distribution has been developed and it matches the results of numerical simulation perfectly for independent data for both exactly on [Formula: see text]th day and within i days. As the autocorrelation of the single index is mostly close to zero, results show that the convolution approach is able to match empirical results to a large extent.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Economics and Econometrics,Finance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3