Multicamera 3D Viewpoint Adjustment for Robotic Surgery via Deep Reinforcement Learning

Author:

Su Yun-Hsuan1ORCID,Huang Kevin2,Hannaford Blake3

Affiliation:

1. Department of Computer Science, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA

2. Department of Engineering, Trinity College, 300 Summit Street, Hartford, CT 06106, USA

3. Department of Electrical and Computer Engineering, University of Washington, 185 Stevens Way, Paul Allen Center — Room AE100R, Campus Box 352500, Seattle, WA 98195-2500, USA

Abstract

While robot-assisted minimally invasive surgery (RMIS) procedures afford a variety of benefits over open surgery and manual laparoscopic operations (including increased tool dexterity, reduced patient pain, incision size, trauma and recovery time, and lower infection rates [ 1 ], lack of spatial awareness remains an issue. Typical laparoscopic imaging can lack sufficient depth cues and haptic feedback, if provided, rarely reflects realistic tissue–tool interactions. This work is part of a larger ongoing research effort to reconstruct 3D surfaces using multiple viewpoints in RMIS to increase visual perception. The manual placement and adjustment of multicamera systems in RMIS are nonideal and prone to error [ 2 ], and other autonomous approaches focus on tool tracking and do not consider reconstruction of the surgical scene [ 3 , 4 , 5 ]. The group’s previous work investigated a novel, context-aware autonomous camera positioning method [ 6 ], which incorporated both tool location and scene coverage for multiple camera viewpoint adjustments. In this paper, the authors expand upon this prior work by implementing a streamlined deep reinforcement learning approach between optimal viewpoints calculated using the prior method [ 6 ] which encourages discovery of otherwise unobserved and additional camera viewpoints. Combining the framework and robustness of the previous work with the efficiency and additional viewpoints of the augmentations presented here results in improved performance and scene coverage promising towards real-time implementation.

Funder

National Science Foundation

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3