ESTIMATION OF SOIL SORPTION COEFFICIENTS OF POLYCYCLIC AROMATIC HYDROCARBONS BY QUANTUM CHEMICAL DESCRIPTORS

Author:

LU GUI-NING12,YANG CHEN1,TAO XUE-QIN3,YI XIAO-YUN1,DANG ZHI1

Affiliation:

1. School of Environmental Science and Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China

2. Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA

3. Department of Environmental Science and Engineering, Zhongkai University of Agriculture and Technology, Guangzhou 510225, PR China

Abstract

Quantitative structure–property relationship (QSPR) modeling is a powerful approach for predicting environmental behavior of organic pollutants with their structure descriptors. This study reports an optimal QSPR model for estimating logarithmic soil sorption coefficients (log K OC ) of polycyclic aromatic hydrocarbons (PAHs). Quantum chemical descriptors computed using density functional theory at the B3LYP/6-31G(d) level and partial least squares (PLS) analysis with an optimizing procedure were used to generate QSPR models for log K OC of PAHs. The correlation coefficient of the optimal model was 0.993, and the results of a cross-validation test ([Formula: see text]) showed this optimal model had high fitting precision and good predicting ability. The log K OC values predicted by the optimal model are very close to those observed. The PLS analysis indicated that PAHs with larger electronic spatial extent tend to more easily adsorb and accumulate in soils and sediments, whereas those with higher molecular total energy and larger energy gap between the lowest unoccupied and the highest occupied molecular orbital adsorb and accumulate in soils and sediments less readily.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3