Voronoi Diagrams of Moving Points

Author:

Albers Gerhard1,Guibas Leonidas J.2,Mitchell Joseph S. B.3,Roos Thomas4

Affiliation:

1. Computer Science Department, University of Würzburg, Germany

2. Computer Science Department, Stanford University, Stanford, CA 94305, USA

3. Department of Applied Mathematics and Statistics, State University of New York at Stony Brook, Stony Brook, NY 11794-3600, USA

4. Computer Science Department, Federal Institute of Technology, Zurich, Switzerland

Abstract

Consider a set of n points in d-dimensional Euclidean space, d ≥ 2, each of which is continuously moving along a given individual trajectory. As the points move, their Voronoi diagram changes continuously, but at certain critical instants in time, topological events occur that cause a change in the Voronoi diagram. In this paper, we present a method of maintaining the Voronoi diagram over time, at a cost of O( log n) per event, while showing that the number of topological events has an upper bound of O(ndλs(n)), where λs(n) is the (nearly linear) maximum length of a (n,s)-Davenport-Schinzel sequence, and s is a constant depending on the motions of the point sites. In addition, we show that if only k points are moving (while leaving the other n - k points fixed), there is an upper bound of O(knd-1λs(n)+(n-k)dλ s(k)) on the number of topological events.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3