Affiliation:
1. Center of Informatics, Federal University of Pernambuco, Pobox 7851 – CEP 50732-970 – Recife (PE), Brazil
Abstract
In this paper, we propose a hybrid machine learning approach to Information Extraction by combining conventional text classification techniques and Hidden Markov Models (HMM). A text classifier generates a (locally optimal) initial output, which is refined by an HMM, providing a globally optimal classification. The proposed approach was evaluated in two case studies and the experiments revealed a consistent gain in performance through the use of the HMM. In the first case study, the implemented prototype was used to extract information from bibliographic references, reaching a precision rate of 87.48% in a test set with 3000 references. In the second case study, the prototype extracted information from author affiliations, reaching a precision rate of 90.27% in a test set with 300 affiliations.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Artificial Intelligence
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献