Automatic information extraction from large websites

Author:

Crescenzi Valter1,Mecca Giansalvatore2

Affiliation:

1. Università di Roma Tre

2. Università della Basilicata, Potenza, Italy

Abstract

Information extraction from websites is nowadays a relevant problem, usually performed by software modules called wrappers. A key requirement is that the wrapper generation process should be automated to the largest extent, in order to allow for large-scale extraction tasks even in presence of changes in the underlying sites. So far, however, only semi-automatic proposals have appeared in the literature.We present a novel approach to information extraction from websites, which reconciles recent proposals for supervised wrapper induction with the more traditional field of grammar inference. Grammar inference provides a promising theoretical framework for the study of unsupervised---that is, fully automatic---wrapper generation algorithms. However, due to some unrealistic assumptions on the input, these algorithms are not practically applicable to Web information extraction tasks.The main contributions of the article stand in the definition of a class of regular languages, called the prefix mark-up languages, that abstract the structures usually found in HTML pages, and in the definition of a polynomial-time unsupervised learning algorithm for this class. The article shows that, differently from other known classes, prefix mark-up languages and the associated algorithm can be practically used for information extraction purposes.A system based on the techniques described in the article has been implemented in a working prototype. We present some experimental results on known Websites, and discuss opportunities and limitations of the proposed approach.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated information collection for thematic interpretation of a Quranic term;PROCEEDINGS OF THE 4TH INTERNATIONAL COMPUTER SCIENCES AND INFORMATICS CONFERENCE (ICSIC 2022);2023

2. Automatic signboard detection and localization in densely populated developing cities;Signal Processing: Image Communication;2022-11

3. WebFormer: The Web-page Transformer for Structure Information Extraction;Proceedings of the ACM Web Conference 2022;2022-04-25

4. Convolutional Neural Networks Base Text Recognition;SSRN Electronic Journal;2022

5. The smallest extraction problem;Proceedings of the VLDB Endowment;2021-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3