MULTIOBJECTIVE PARTICLE SWARM OPTIMIZATION BASED ON DIMENSIONAL UPDATE

Author:

XU HEMING1,WANG YINGLIN1,XU XIN1

Affiliation:

1. Department of Computer Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China

Abstract

For multiobjective particle swarm optimization (MOPSO), two particles may be incomparable, i. e., not dominated by each other. The personal best and the global best for the particle become less optimal, thus the convergence becomes slow. Even worse, an archive of a limited size can not cover the entire region dominated by the Pareto front, the uncovered region can contain unidentifiable nondominated solutions that are not optimal, and thus the precision the algorithm achieves encounters a plateau. Therefore we propose dimensional update, i. e., evaluating the particle's fitness after updating each variable of its position. Separate consideration of the impact of each variable decreases the occurrence of incomparable relations, thus improves the performance. Experimental results validate the efficiency of our algorithm.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3