Towards Faster Mining of Disjunction-Based Concise Representations of Frequent Patterns

Author:

Hamrouni T.1,Ben Yahia S.12,Mephu Nguifo E.34

Affiliation:

1. LIPAH, Computer Science Department, Faculty of Sciences of Tunis, Tunis El Manar University, University Campus, Tunis, Tunisia

2. Computer Science Department, Télécom SudParis, UMR CNRS Samovar, 91011 Evry Cedex, France

3. Clermont Université, Université Blaise Pascal, LIMOS, BP 10448, F-63000 Clermont-Ferrand, France

4. CNRS, UMR 6158, LIMOS, F-63173 Aubière, France

Abstract

In many real-life datasets, the number of extracted frequent patterns was shown to be huge, hampering the effective exploitation of such amount of knowledge by human experts. To overcome this limitation, exact condensed representations were introduced in order to offer a small-sized set of elements from which the faithful retrieval of all frequent patterns is possible. In this paper, we introduce a new exact condensed representation only based on particular elements from the disjunctive search space. In this space, a pattern is characterized by its disjunctive support, i.e., the frequency of complementary occurrences – instead of the ubiquitous co-occurrence link – of its items. For several benchmark datasets, this representation has been shown interesting in compactness terms compared to the pioneering approaches of the literature. In this respect, we mainly focus here on proposing an efficient tool for mining this representation. For this purpose, we introduce an algorithm, called DSSRM, dedicated to this task. We also propose several techniques to optimize its mining time as well as its memory consumption. The carried out empirical study on benchmark datasets shows that DSSRM is faster by several orders of magnitude than the MEP algorithm.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Reference32 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GridWall: A Novel Condensed Representation of Frequent Itemsets;Intelligent Computing Theories and Application;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3