AN EFFICIENT IMPLICIT MESH-FREE METHOD TO SOLVE TWO-DIMENSIONAL COMPRESSIBLE EULER EQUATIONS

Author:

CHEN H. Q.1,SHU C.2

Affiliation:

1. Department of Aerodynamics, Nanjing University of Aeronautics and Astronautics, 29 Yudao Jie, Nanjing 210016, P. R. China

2. Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 117576, Singapore

Abstract

Local radial basis function-based differential quadrature (RBF-DQ) method is a natural mesh-free approach, in which any derivative of a function at a point is approximated by a weighted linear sum of functional values at its surrounding scattered points. In this paper, the weighting coefficients in the spatial derivative approximation of the Euler equation are determined by using a weighted least-square procedure in the frame of RBFs, which enhances the flexibility of distributing points in the computational domain. An upwind method is further introduced to cope with discontinuities by using Roe's approximate Riemann solver for estimation of the inviscid flux on the virtual mid-point between the reference knot and its surrounding knot. The lower–upper symmetric Gauss–Seidel (LU-SGS) algorithm, which is implemented in a matrix-free form like the one used in the finite-volume method, is introduced in the work to speed up the convergence. The proposed approach is validated by its application to simulate transonic flows over a NACA 0012 airfoil. It was found that the present mesh-free results agree very well with available data in the literature, and the implicit LU-SGS algorithm can greatly save the computational time as compared with explicit time marching methods.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3