A shock-capturing meshless method for solving the one-dimensional Saint-Venant equations on a highly variable topography

Author:

Satyaprasad D.1,Kuiry Soumendra Nath2ORCID,Sundar S.1

Affiliation:

1. a Centre for Computational Mathematics and Data Science, Department of Mathematics, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India

2. b Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India

Abstract

Abstract The Saint-Venant equations are numerically solved to simulate free surface flows in one dimension. A Riemann solver is needed to compute the numerical flux for capturing shocks and flow discontinuities occurring in flow situations such as hydraulic jump, dam-break wave propagation, or bore wave propagation. A Riemann solver that captures shocks and flow discontinuities is not yet reported to be implemented within the framework of a meshless method for solving the Saint-Venant equations. Therefore, a wide range of free surface flow problems cannot be simulated by the available meshless methods. In this study, a shock-capturing meshless method is proposed for simulating one-dimensional (1D) flows on a highly variable topography. The Harten–Lax–van Leer Riemann solver is used for computing the convective flux in the proposed meshless method. Spatial derivatives in the Saint-Venant equations and the reconstruction of conservative variables for flux terms are computed using a weighted least square approximation. The proposed method is tested for various numerically challenging problems and laboratory experiments on different flow regimes. The proposed highly accurate shock-capturing meshless method has the potential to be extended to solve the two-dimensional (2D) shallow water equations without any mesh requirements.

Funder

MHRD

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3