PREDICTION OF CONVECTIVE HEAT TRANSFER OF NANOFLUIDS BASED ON FRACTAL-MONTE CARLO SIMULATIONS

Author:

XIAO BO-QI12,JIANG GUO-PING3,YANG YI4,ZHENG DONG-MEI1

Affiliation:

1. School of Physics and Electromechanical Engineering, Sanming University, Sanming 365004, P. R. China

2. Institute of Textiles and Clothing, Hong Kong Polytechnic University, Kowloon, Hong Kong

3. Earthquake Engineering Research Test Center, Guangzhou University, Guangzhou 510405, P. R. China

4. Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong

Abstract

With the consideration of the Brownian motion of nanoparticles in fluids, the probability model for the size of nanoparticles and the model for convective heat transfer of nanofluids are derived based on the fractal character of nanoparticles. The proposed model is expressed as a function of the size of nanoparticles, the volumetric nanoparticle concentration, the thermal conductivity of base fluids, fractal dimension of nanoparticles and the temperature, as well as the random number. It is found that the convective heat flux of nanofluids decreases with increasing of the average diameter of nanoparticles. This model has the characters of both analytical and numerical solutions. The Monte Carlo simulations combined with the fractal geometry theory are performed. Every parameter of the proposed formula on convective heat transfer of nanofluids has clear physical meaning. So the proposed model can reveal the physical mechanisms of convective heat transfer of nanofluids.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3