A NOVEL FRACTAL MODEL FOR GAS DIFFUSION COEFFICIENT IN DRY POROUS MEDIA EMBEDDED WITH A DAMAGED TREE-LIKE BRANCHING NETWORK

Author:

XIAO BOQI12ORCID,WANG PEILONG1,WU JINSUI23,ZHU HUAIZHI1,LIU MINGXING1,LIU YONGHUI1,LONG GONGBO1

Affiliation:

1. School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China

2. Hebei State Key Laboratory of Mine Disaster Prevention, North China Institute of Science and Technology, Beijing 101601, P. R. China

3. School of Safety Engineering, North China Institute of Science and Technology, Beijing 101601, P. R. China

Abstract

A novel gas diffusivity model for dry porous media with a damaged tree-like branching network is proposed by using the fractal theory in this study. We systematically investigated the effects of the number of damaged channels and the other structural parameters on the dimensionless gas diffusivity (DGD) and concentration drop. As the number of damaged channels increases, the DGD presents a decreasing trend, while the ratio of concentration drop shows a rising tendency. Meanwhile, the DGD is negatively correlated to the length exponent, the total number of branching levels, and the branching angle, respectively. On the other hand, the DGD is positively correlated with the diameter exponent. Besides, the ratio of concentration drop is negatively correlated with the length exponent and the total number of branching levels. However, it is positively associated with the diameter exponent and branching levels. In addition, during the calculation of the value of concentration drop, the total concentration drop can be disassembled into two equal-ratio sequences. And the scale factors in sequences are constants that are independent of the number of damaged channels. The reliability of the model predictions was verified by a comparison with the experimental data available in the literature. The physical mechanism of gas diffusion in the damaged network may be well explained by the proposed model.

Funder

Open Fund

Hebei State Key Laboratory of Mine Disaster Prevention, North China Institute of Science and Technology, Beijing

Knowledge Innovation Program of Wuhan-Basic Research

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3