Affiliation:
1. School of Engineering Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
2. Institute of Information Sciences and Technology, Massey University, New Zealand
Abstract
This paper extends a cellular automaton model, named modified comfortable driving (MCD) model, to a two-lane roadway. A symmetric lane-changing rule set has been proposed (Set I). The fundamental diagram, the lane-changing frequency and space-time plots are presented. It is found that for the two-lane model, there exists a density range in which phase separation between synchronized flow and wide-moving jams on one lane, and between light synchronized flow and heavy synchronized flow on the other lane, can be maintained for quite long periods of time. In this density range, (i) the outflow from jams is synchronized flow; (ii) wide moving jams are sparse. These are consistent with the empirical observation. We also investigate a slightly different lane-changing rule Set II in which stopped vehicles are not allowed to change lane. It is shown that in this case, the phase separation, between free flow and wide moving jams on one lane and between free flow and heavy synchronized flow on the other lane, can be maintained for sufficiently long periods of time. Consequently, the flux is enhanced comparing to that of rule Set I.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献