Affiliation:
1. COPRIN Project, I3S-INRIA, University of Nice–Sophia Antipolis, 2004 route des lucioles, 06902 Sophia Antipolis cedex, B.P. 93, France
2. MOVI Project, INRIA Rhône-Alpes, 655 avenue de l'Europe, Montbonnot, 38334 Saint Ismier cedex, France
Abstract
Our approach exploits a general-purpose decomposition algorithm, called GPDOF, and a dictionary of very efficient solving procedures, called r-methods, based on theorems of geometry. GPDOF decomposes an equation system into a sequence of small subsystems solved by r-methods, and produces a set of input parameters.1. Recursive assembly methods (decomposition-recombination), maximum matching based algorithms, and other famous propagation schema are not well-suited or cannot be easily extended to tackle geometric constraint systems that are under-constrained. In this paper, we show experimentally that, provided that redundant constraints have been removed from the system, GPDOF can quickly decompose large under-constrained systems of geometrical constraints. We have validated our approach by reconstructing, from images, 3D models of buildings using interactively introduced geometrical constraints. Models satisfying the set of linear, bilinear and quadratic geometric constraints are optimized to fit the image information. Our models contain several hundreds of equations. The constraint system is decomposed in a few seconds, and can then be solved in hundredths of seconds.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献