Quantification of Effects of Ridge and Valley Topography on the Rayleigh Wave Characteristics

Author:

Narayan J. P.1,Kumar A.1

Affiliation:

1. Department of Earthquake Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India

Abstract

The effects of ridge and valley on the characteristics of Rayleigh waves are presented in this paper. The research work carried out has been stimulated by the day by day increase of long-span structures in the hilly areas which are largely affected by the spatial variability in ground motion caused by the high-frequency Rayleigh waves. The Rayleigh wave responses of the considered triangular and elliptical ridge and valley models were computed using a fourth-order accurate staggered-grid viscoelastic P-SV wave finite-difference (FD) program. The simulated results revealed very large amplification of the horizontal component and de-amplification of the vertical component of Rayleigh wave at the top of a triangular ridge and de-amplification of both the components at the base of the triangular valley. The observed amplification of both the components of Rayleigh wave in front of elliptical valley was larger than triangular valley models. A splitting of the Rayleigh wave wavelet was inferred after interaction with ridge and valley. It is concluded that the large-scale topography acts as a natural insulator for the surface waves and the insulating capacity of the valley is more than that of a ridge. This insulation phenomenon is arising due to the reflection, diffraction and splitting of the surface wave while moving across the topography. It is concluded that insulating potential of the topography for the Rayleigh waves largely depends on their shape and shape-ratio.

Publisher

World Scientific Pub Co Pte Lt

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3