Evaluation the Effects of Wave Scattering Resonance from Complex Topographies Using Boundary Element Method

Author:

Isari Mohsen1,Tarinejad Reza2,Foumani Ramtin Sobhkhiz3,Ghalesari Abbasali Taghavi4

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Kurdistan, Iran

2. Faculty of Civil Engineering, University of Tabriz, 29 Bahman Blvd., Tabriz 51666, East Azerbaijan, Iran

3. Civil Engineering Department, University of Qom, Qom, Iran

4. The Transtec Group Inc., University of Texas at El Paso Austin, El Paso, TX 78731, USA

Abstract

One of the important factors in the amplification of seismic waves arriving the ground surface is site effects. Site effects, known as topographic irregularities, lead to seismic wave scattering, and this phenomenon can amplify or reduce the displacement recorded in different parts of a site. Therefore, it is necessary to investigate these effects for an accurate evaluation of the dynamic response of the structures built on these sites. One of the topics that has been given little attention is the interaction effects of topographic irregularities on each other’s dynamic responses. Using the three-dimensional boundary element method (3D-BEM) in the frequency domain, this study investigated the dynamic response of the site with canyons and hills adjacent to each other at different intervals and under SH seismic waves with different angles and dimensionless frequencies and with the hill in different geometries (semi-elliptical, triangular, semi-circular). The obtained results indicated that parts of the canyon that are adjacent to the hill underwent the greatest amplification, especially when the distance between the canyon and the hill is small. It was also found that the incident angle of the waves is one of the important parameters in the obtained displacement pattern on the site. Although the wave hit the canyon-hill site vertically, the results revealed that an asymmetric displacement pattern was experienced on the dynamic response of the site due to the phenomenon of amplification of seismic wave dispersion.

Funder

the Vice Chancellor for Research and Technology in the University of Kurdistan

Publisher

World Scientific Pub Co Pte Ltd

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3