Stochastic Response of a Coastal Cable-Stayed Bridge Subjected to Multi-Dimensional and Multi-Supported Earthquake and Waves

Author:

MENG SIBO12ORCID,DING YANG13

Affiliation:

1. School of Civil Engineering, Tianjin University, Tianjin 300350, P. R. China

2. Tianjin Key Laboratory of Structural Protection and Reinforcement, Tianjin Chengjian University, Tianjin 300384, P. R. China

3. Key Laboratory of Coast Civil, Structure Safety (Tianjin University), Ministry of Education, Tianjin 300350, P. R. China

Abstract

In this paper, a stochastic dynamic analysis method for cable-stayed bridges subjected to multi-dimensional and multi-supported earthquake and waves is established based on the pseudo-excitation method. The Monte Carlo method is used to analyze the influence of excitation nonlinearity on the bridge structure response, and the applicability of this method is verified. Stochastic response characteristic of coastal cable-stayed bridges subjected to multi-dimensional and multi-supported earthquake and waves is studied. The influence of water–structure interaction on the stochastic seismic response of main components of the cable-stayed bridge is described, and the influence of key parameters is analyzed. The results show that the influence of excitation nonlinearity on the response of the cable-stayed bridge can be neglected. A greater energy input caused by the rigid additional mass of the hydrodynamic pressure is the reason for the increasing of the seismic response. The influence of stochastic response of the underwater structure of the tower is changed with the site conditions. For the ground motion acceleration input energy being distributed in the high-frequency domain, the water–structure interaction has a greater effect on stochastic seismic response of the underwater structure of the tower. The influence of water–structure interaction on the stochastic seismic response of the underwater structure of the cable-stayed bridge increases with the increasing of the wave height and water depth.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3