Affiliation:
1. Department of Hydraulic and Ocean Engineering, National Cheng Kung University, No. 1, University Rd., East District, Tainan City 70101, Taiwan
Abstract
Understanding the runup and inundation of long waves on coasts is of great importance for coastal community as flooding hazards are closely related to safety issues. For many years, solitary and solitary-like waves are frequently considered as a surrogate of extremely long waves for estimating runup and inundation. Since scaling issues are of concern when extending to real-world conditions, large-scale experiments for solitary waves on uniform beaches are reviewed and additional experiments for solitary waves on composite slopes are performed in this study. As such, those experimental data obtained from large-scale physical modeling can be used to validate numerical models and then to extend the range of parameters in terms of wave conditions and slope geometries which cannot be straightforwardly achieved in large-scale experimental works. Considering the computational efficiency, an open-source non-hydrostatic wave-flow model SWASH is used herein. Detailed model-data comparisons in terms of free surface elevation time series and maximum runup heights are carried out for long waves running up and down on beaches with different slope gradients to ensure the accuracy of the SWASH model for such applications. Finally, a simple method for estimating maximum shoreline excursion for solitary waves on a particularly designed composite slope is provided.
Funder
Ministry of Science and Technology, Taiwan
Ministry of Education
Publisher
World Scientific Pub Co Pte Ltd
Subject
Geophysics,Geotechnical Engineering and Engineering Geology,Oceanography
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. SPH modeling of dam-break bores on smooth and macro-roughness slopes;Ocean Engineering;2023-07
2. Preface;Journal of Earthquake and Tsunami;2022-10-11