Laboratory-scale swash flows generated by a non-breaking solitary wave on a steep slope

Author:

Higuera P.ORCID,Liu P. L.-F.,Lin C.,Wong W.-Y.,Kao M.-J.

Abstract

The main goal of this paper is to provide insights into swash flow dynamics, generated by a non-breaking solitary wave on a steep slope. Both laboratory experiments and numerical simulations are conducted to investigate the details of runup and rundown processes. Special attention is given to the evolution of the bottom boundary layer over the slope in terms of flow separation, vortex formation and the development of a hydraulic jump during the rundown phase. Laboratory experiments were performed to measure the flow velocity fields by means of high-speed particle image velocimetry (HSPIV). Detailed pathline patterns of the swash flows and free-surface profiles were also visualized. Highly resolved computational fluid dynamics (CFD) simulations were carried out. Numerical results are compared with laboratory measurements with a focus on the velocities inside the boundary layer. The overall agreement is excellent during the initial stage of the runup process. However, discrepancies in the model/data comparison grow as time advances because the numerical model does not simulate the shoreline dynamics accurately. Introducing small temporal and spatial shifts in the comparison yields adequate agreement during the entire rundown process. Highly resolved numerical solutions are used to study physical variables that are not measured in laboratory experiments (e.g. pressure field and bottom shear stress). It is shown that the main mechanism for vortex shedding is correlated with the large pressure gradient along the slope as the rundown flow transitions from supercritical to subcritical, under the developing hydraulic jump. Furthermore, the bottom shear stress analysis indicates that the largest values occur at the shoreline and that the relatively large bottom shear stress also takes place within the supercritical flow region, being associated with the backwash vortex system rather than the plunging wave. It is clearly demonstrated that the combination of laboratory observations and numerical simulations have indeed provided significant insights into the swash flow processes.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3