Affiliation:
1. Institute of Parallel and Distributed Systems, University of Stuttgart, Germany
2. Department of Economics, University of Urbino, Italy
Abstract
The complex bifurcation structure in the parameter space of the general piecewise-linear scalar map with a single discontinuity — nowadays known as nested period adding structure — was completely studied analytically by N. N. Leonov already 50 years ago. He used an elegant and very efficient recursive technique, which allows the analytical calculation of the border-collision bifurcation curves, causing the nested period adding structure to occur. In this work, we have demonstrated that the application of Leonov's technique is not resticted to that particular bifurcation structure. On the contrary, the presented map replacement approach, which is an extension of Leonov's technique, allows the analytical calculation of border-collision bifurcation curves for periodic orbits with high periods and complex symbolic sequences using appropriate composite maps and the bifurcation curves for periodic orbits with much lower periods.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献