Codimension-two border collision bifurcation in a two-class growth model with optimal saving and switch in behavior

Author:

Sushko Iryna,Commendatore Pasquale,Kubin Ingrid

Abstract

AbstractWe consider a two-class growth model with optimal saving and switch in behavior. The dynamics of this model is described by a two-dimensional (2D) discontinuous map. We obtain stability conditions of the border and interior fixed points (known as Solow and Pasinetti equilibria, respectively) and investigate bifurcation structures observed in the parameter space of this map, associated with its attracting cycles and chaotic attractors. In particular, we show that on the x-axis, which is invariant, the map is reduced to a 1D piecewise increasing discontinuous map, and prove the existence of a corresponding period adding bifurcation structure issuing from a codimension-two border collision bifurcation point. Then, we describe how this structure evolves when the related attracting cycles on the x-axis lose their transverse stability via a transcritical bifurcation and the corresponding interior cycles appear. In particular, we show that the observed bifurcation structure, being associated with the 2D discontinuous map, is characterized by multistability, that is impossible in the case of a standard period adding bifurcation structure.

Funder

Vienna University of Economics and Business

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On bifurcations of chaotic attractors in a pulse width modulated control system;Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes;2024

2. Quasi-periodic motions in a two-class economy with technology choice: an extreme case;Nonlinear Dynamics;2022-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3