Affiliation:
1. Electrical Engineering Department, University of Florida, Gainesville FL 32611, USA
Abstract
This paper deals with the role of neural-network based prediction for the modeling of nonlinear dynamical systems. We show experimentally that the backpropagation learning rule to train neural networks and the prediction error, so widely utilized in teaching and comparing nonlinear predictors, do not consistently indicate that the neural network based model has indeed captured the dynamics of the system that produced the time series. Frequently, but not always, the neural network when used as an autonomous system in a feedback configuration was able to generate a time series that has dynamical invariants similar to the original time series. We show that the estimation of the dynamical invariants (correlation dimension, largest Lyapunov exponent) of the predicted and original time series are an appropriate tool to validate the predictive model.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献