Time-Delay Identification Using Multiscale Ordinal Quantifiers

Author:

Soriano Miguel C.ORCID,Zunino LucianoORCID

Abstract

Time-delayed interactions naturally appear in a multitude of real-world systems due to the finite propagation speed of physical quantities. Often, the time scales of the interactions are unknown to an external observer and need to be inferred from time series of observed data. We explore, in this work, the properties of several ordinal-based quantifiers for the identification of time-delays from time series. To that end, we generate artificial time series of stochastic and deterministic time-delay models. We find that the presence of a nonlinearity in the generating model has consequences for the distribution of ordinal patterns and, consequently, on the delay-identification qualities of the quantifiers. Here, we put forward a novel ordinal-based quantifier that is particularly sensitive to nonlinearities in the generating model and compare it with previously-defined quantifiers. We conclude from our analysis on artificially generated data that the proper identification of the presence of a time-delay and its precise value from time series benefits from the complementary use of ordinal-based quantifiers and the standard autocorrelation function. We further validate these tools with a practical example on real-world data originating from the North Atlantic Oscillation weather phenomenon.

Funder

Agencia Estatal de Investigación

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference51 articles.

1. Applied Delay Differential Equations;Erneux,2009

2. An Introduction to Delay Differential Equations with Applications to the Life Sciences;Smith,2011

3. External optical feedback effects on semiconductor injection laser properties

4. Optical Turbulence: Chaotic Behavior of Transmitted Light from a Ring Cavity

5. Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3