Affiliation:
1. 1-19-20-203, Arae, Jonan-ku, Fukuoka 814-0101, Japan
2. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
Abstract
In this paper, we show that Hamilton's equations can be recast into the equations of dissipative memristor circuits. In these memristor circuits, the Hamiltonians can be obtained from the principles of conservation of "charge" and "flux", or the principles of conservation of "energy". Furthermore, the dynamics of memristor circuits can be recast into the dynamics of "ideal memristor" circuits. We also show that nonlinear capacitors are transformed into nonideal memristors if an exponential coordinate transformation is applied. Furthermore, we show that the zero-crossing phenomenon does not occur in some memristor circuits because the trajectories do not intersect the i = 0 axis. We next show that nonlinear circuits can be realized with fewer elements if we use memristors. For example, Van der Pol oscillator can be realized by only two elements: an inductor and a memristor. Chua's circuit can be realized by only three elements: an inductor, a capacitor, and a voltage-controlled memristor. Finally, we show an example of two-cell memristor CNNs. In this system, the neuron's activity depends partly on the supplied currents of the memristors.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献