Bifurcation, Hidden Chaos, Entropy and Control in Hénon-Based Fractional Memristor Map with Commensurate and Incommensurate Orders

Author:

Abualhomos Mayada1,Abbes Abderrahmane2,Gharib Gharib Mousa3,Shihadeh Abdallah4ORCID,Al Soudi Maha S.5,Alsaraireh Ahmed Atallah6,Ouannas Adel7

Affiliation:

1. Applied Science Research Center (ASRC), Applied Science Private University, Amman 11942, Jordan

2. Laboratory of Mathematics, Dynamics and Modelization, Badji Mokhtar-Annaba University, Annaba 23000, Algeria

3. Department of Mathematics, Faculty of Science, Zarqa University, Zarqa 13110, Jordan

4. Department of Mathematics, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan

5. Department of Basic Scientific Sciences, Applied Science Private University, Amman 11931, Jordan

6. Department of Computer Information Systems, The University of Jordan, Amman 11942, Jordan

7. Department of Mathematics and Computer Science, University of Larbi Ben M’hidi, Oum El Bouaghi 04000, Algeria

Abstract

In this paper, we present an innovative 3D fractional Hénon-based memristor map and conduct an extensive exploration and analysis of its dynamic behaviors under commensurate and incommensurate orders. The study employs diverse numerical techniques, such as visualizing phase portraits, analyzing Lyapunov exponents, plotting bifurcation diagrams, and applying the sample entropy test to assess the complexity and validate the chaotic characteristics. However, since the proposed fractional map has no fixed points, the outcomes reveal that the map can exhibit a wide range of hidden dynamical behaviors. This phenomenon significantly augments the complexity of the fractal structure inherent to the chaotic attractors. Moreover, we introduce nonlinear controllers designed for stabilizing and synchronizing the proposed fractional Hénon-based memristor map. The research emphasizes the system’s sensitivity to fractional-order parameters, resulting in the emergence of distinct dynamic patterns. The memristor-based chaotic map exhibits rich and intricate behavior, making it a captivating and significant area of investigation.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference42 articles.

1. Hilfer, R. (2000). Applications of Fractional Calculus in Physics, World Scientific.

2. Discrete fractional calculus with the nabla operator;Atici;Electron. J. Qual. Theory Differ. Equ. [Electron. Only],2009

3. Principles of delta fractional calculus on time scales and inequalities;Anastassiou;Math. Comput. Model.,2010

4. On Riemann and Caputo fractional differences;Abdeljawad;Comput. Math. Appl.,2011

5. Caputo–Hadamard fractional differential equations on time scales: Numerical scheme, asymptotic stability, and chaos;Wu;Chaos Interdiscip. J. Nonlinear Sci.,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3