A Neurobiological Theory of Meaning in Perception Part II: Spatial Patterns of Phase in Gamma EEGs from Primary Sensory Cortices Reveal the Dynamics of Mesoscopic Wave Packets

Author:

Freeman Walter J.1

Affiliation:

1. Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA

Abstract

Domains of cooperative neural activity called "wave packets" have been discovered in the visual, auditory, and somatomotor cortices of rabbits that were trained to discriminate conditioned stimuli in these modalities. Each domain forms by a first order state transition, which strongly resembles a phase transition from vapor to liquid. In this view, raw sense data injected into cortex by sensory axons drive cortical action potentials in swarms like water molecules in steam. The increased activity destabilizes the cortex. Within 3 to 7 milliseconds of transition onset, the activity binds together into a state resembling a scintillating rain drop, which lasts ~80 to 100 milliseconds, then dissolves. Wave packets form at rates of 2 to 7/second in all sensory areas, overlapping in space and time. Results of sensory information processing are seen in spatial patterns of amplitude modulation (AM) of wave packets with carrier waves in the gamma range (20 to 80 Hz in rabbits). The AM patterns correspond to categories of CSs that the rabbits can discriminate. The patterns are found in electroencephalographic (EEG) potentials generated by dendrites and recorded with high-density electrode arrays. The state transitions by which AM patterns form are manifested in the spatial pattern of phase modulation (PM), which have the radial symmetry of a cone. The apex of a PM cone marks the site of nucleation of an AM pattern. The phase gradient gives a soft boundary condition, where the axonal delay in spread gives sufficient phase dispersion to reach the half-power level. The size of the wave packets (10 to 30 mm in diameter in rabbits) is determined largely by the conduction velocities of intracortical axons through which the neural cooperation is maintained. The findings show that significant cortical activity takes the form of mesoscopic interactions of millions of neurons in broad areas of cortex, which are more clearly detected in graded dendritic potentials than in action potentials. The distinction is analogous to the difference between statistical mechanical and thermodynamic descriptions of particle behavior. Both types of neural activity show spatial and temporal discontinuities but at distinctive scales of microns and msec versus mm and tenths of a second. The aim of measurement here is to establish the wave packet as the information carrier at the mesoscopic level in brain dynamics, comparable to the role of the action potential as the information carrier at the microscopic level in neuron dynamics.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3