Affiliation:
1. Department of Engineering Mathematics, University of Bristol, BS8 1TR, UK
2. Department of Mechanics, Royal Institute of Technology, Sweden
Abstract
Recent investigations of nonsmooth dynamical systems have resulted in the study of a class of novel bifurcations termed as sliding bifurcations. These bifurcations are a characteristic feature of so-called Filippov systems, that is, systems of ordinary differential equations (ODEs) with discontinuous right-hand sides. In this paper we show that sliding bifurcations also play an important role in organizing the dynamics of dry friction oscillators, which are a subclass of nonsmooth systems. After introducing the possible codimension-1 sliding bifurcations of limit cycles, we show that these bifurcations organize different types of "slip to stick-slip" transitions in dry friction oscillators. In particular, we show both numerically and analytically that a sliding bifurcation is an important mechanism causing the sudden jump to chaos previously unexplained in the literature on friction systems. To analyze such bifurcations we make use of a new analytical method based on the study of appropriate normal form maps describing sliding bifurcations. Also, we explain the circumstances under which the theory of so-called border-collision bifurcations can be used in order to explain the onset of complex behavior in stick-slip systems.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
128 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献