Melnikov-Type Chaos of Planar Systems with Two Discontinuities

Author:

Castro Jose12,Alvarez Joaquin1

Affiliation:

1. CICESE, Electronics and Telecommunications Department, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, BC 22860, Mexico

2. ITESCA, Subdirección de Posgrado e Investigación, Carr. Int. a Nogales Km. 2, Ciudad Obregón, Son, Mexico

Abstract

In this paper, the chaotic behavior of a driven planar system with two discontinuous terms and a pseudo-equilibrium point in the intersection of the discontinuity surfaces is analyzed. This scenario is not covered by smooth techniques of chaos analysis or other techniques like the extension of Melnikov's method for nonsmooth systems. In consequence, we propose to use an approximate model of the discontinuous system for which this technique can be applied, and compare the responses of both systems, the discontinuous and the approximate, when this last model is close, in a certain way, to the discontinuous system. One of the discontinuous terms, given by a sign function, is approximated by a saturation with high slope at the equilibrium point. Some conditions that determine the chaotic behavior of the approximate system are formally established, and the convergence of its chaotic orbits to some orbits of the discontinuous system, when the slope of the approximation is large enough, is shown. In particular, we show the similarity of the dynamical behavior of both systems where a chaotic behavior can be displayed, for a parameter region determined by the application of the Melnikov technique to nonsmooth systems. A comparison of the Feigenbaum diagrams, for a parameter range obtained from the application of this technique, shows the similarity of their dynamics and the chaotic nature of the discontinuous system.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3