Melnikov-type method for a class of planar hybrid piecewise-smooth systems with impulsive effect and noise excitation: Heteroclinic orbits

Author:

Wei Zhouchao12ORCID,Li Yuxi1,Moroz Irene3,Zhang Wei4

Affiliation:

1. School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China

2. Zhejiang Institute, China University of Geosciences, Hangzhou, Zhejiang 311305, China

3. Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom

4. College of Mechanical Engineering, Beijing University of Technology, Beijing 100124, China

Abstract

The classical Melnikov method for heteroclinic orbits is extended theoretically to a class of hybrid piecewise-smooth systems with impulsive effect and noise excitation. We assume that the unperturbed system is a piecewise Hamiltonian system with a pair of heteroclinic orbits. The heteroclinic orbit transversally jumps across the first switching manifold by an impulsive effect and crosses the second switching manifold continuously. In effect, the trajectory of the corresponding perturbed system crosses the second switching manifold by applying the reset map describing the impact rule instantaneously. The random Melnikov process of such systems is then derived by measuring the distance of perturbed stable and unstable manifolds, and the criteria for the onset of chaos with or without noise excitation is established. In this derivation process, we overcome the difficulty that the derivation method of the corresponding homoclinic case cannot be directly used due to the difference between the symmetry of the homoclinic orbit and the asymmetry of the heteroclinic orbit. Finally, we investigate the complicated dynamics of a particular piecewise-smooth system with and without noise excitation under the reset maps, impulsive effect, and non-autonomous periodic and damping perturbations by this new extended method and numerical simulations. The numerical results verify the correctness of the theoretical results and demonstrate that this extended method is simple and effective for studying the dynamics of such systems.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Central University Basic Research Fund of China

Young Top-touch Talent of Hubei Province

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3