VALIDATED STUDY OF THE EXISTENCE OF SHORT CYCLES FOR CHAOTIC SYSTEMS USING SYMBOLIC DYNAMICS AND INTERVAL TOOLS

Author:

GALIAS ZBIGNIEW1,TUCKER WARWICK2

Affiliation:

1. Department of Electrical Engineering, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland

2. Department of Mathematics, Uppsala University, Box 480, 751 06 Uppsala, Sweden

Abstract

We show that, for a certain class of systems, the problem of establishing the existence of periodic orbits can be successfully studied by a symbolic dynamics approach combined with interval methods. Symbolic dynamics is used to find approximate positions of periodic points, and the existence of periodic orbits in a neighborhood of these approximations is proved using an interval operator. As an example, the Lorenz system is studied; a theoretical argument is used to prove that each periodic orbit has a distinct symbol sequence. All periodic orbits with the period p ≤ 16 of the Poincaré map associated with the Lorenz system are found. Estimates of the topological entropy of the Poincaré map and the flow, based on the number and flow-times of short periodic orbits, are calculated. Finally, we establish the existence of several long periodic orbits with specific symbol sequences.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3