INTERVAL METHODS FOR RIGOROUS INVESTIGATIONS OF PERIODIC ORBITS

Author:

GALIAS ZBIGNIEW1

Affiliation:

1. Institute for Nonlinear Science, University of California, San Diego, 9500 Gilman Dr., San Diego, CA 92093-0402, USA

Abstract

In this paper, we investigate the possibility of using interval arithmetic for rigorous investigations of periodic orbits in discrete-time dynamical systems with special emphasis on chaotic systems. We show that methods based on interval arithmetic when implemented properly are capable of finding all period-n cycles for considerable large n. We compare several interval methods for finding periodic orbits. We consider the interval Newton method and methods based on the Krawczyk operator and the Hansen–Sengupta operator. We also test the global versions of these three methods. We propose algorithms for computation of the invariant part and nonwandering part of a given set and for computation of the basin of attraction of stable periodic orbits, which allow reducing greatly the search space for periodic orbits. As examples we consider two-dimensional chaotic discrete-time dynamical systems, defined by the Hénon map and the Ikeda map, with the "standard" parameter values for which the chaotic behavior is observed. For both maps using the algorithms presented in this paper, we find very good approximation of the invariant part and the nonwandering part of the region enclosing the chaotic attractor observed numerically. For the Hénon map we find all cycles with period n ≤ 30 belonging to the trapping region. For the Ikeda map we find the basin of attraction of the stable fixed point and all periodic orbits with period n ≤ 15. For both systems using the number of short cycles, we estimate its topological entropy.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Search for invariant sets of the generalized tent map;Journal of Difference Equations and Applications;2022-09-27

2. Chaos-Based Applications of Computing Dynamical Systems at Finite Resolution;The 8th International Conference on Advanced Machine Learning and Technologies and Applications (AMLTA2022);2022

3. Experimental Verification of Stability Theory for a Planar Rigid Body With Two Unilateral Frictional Contacts;IEEE Transactions on Robotics;2021-10

4. On Topological Entropy of Finite Representations of the Hénon Map;International Journal of Bifurcation and Chaos;2019-12-10

5. An improved verification algorithm for nonlinear systems of equations based on Krawczyk operator;Journal of Computational and Applied Mathematics;2019-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3