Baroclinic Flow and the Lorenz-84 Model

Author:

van Veen Lennaert1

Affiliation:

1. Mathematical Institute, University of Utrecht, PO Box 80.010, 3508 TA Utrecht, The Netherlands

Abstract

The bifurcation diagram of a truncation to six degrees of freedom of the equations for quasi-geostrophic, baroclinic flow is investigated. Period-doubling cascades and Shil'nikov bifurcations lead to chaos in this model. The low dimension of the chaotic attractor suggests the possibility to reduce the model to three degrees of freedom. In a physically comprehensible limit of the parameters this reduction is done explicitly. The bifurcation diagram of the reduced model in this limit is compared to the diagram of the six degrees of freedom model and agrees well. A numerical implementation of the graph transform is used to approximate the three-dimensional invariant manifold away from the limit case. If the six-dimensional model is reduced to a linearisation of the invariant manifold about the Hadley state, the Lorenz-84 model is found. Its parameters can then be calculated from the physical parameters of the quasi-geostrophic model. Bifurcation diagrams at physical and traditional parameter values are compared and routes to chaos in the Lorenz-84 model are described.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3