A reexamination of methods for evaluating the predictability of the atmosphere

Author:

Anderson J. L.,Hubeny V.

Abstract

Abstract. Pioneering work by Lorenz (1965, 1968, 1969) developed a number of methods for exploring the limits of predictability of the atmosphere. One method uses an integration of a realistic numerical model as a surrogate for the atmosphere. The evolution of small perturbations to the integration are used to estimate how quickly errors resulting from a given observational error distribution would grow in this perfect model context. In reality, an additional constraint must be applied to this predictability problem. In the real atmosphere, only states that belong to the atmosphere's climate occur and one is only interested in how such realizable states diverge in time. Similarly, in a perfect model study, only states on the model's attractor occur. However, a prescribed observational error distribution may project on states that are off the attractor, resulting in unrepresentative error growth. The 'correct' error growth problem examines growth for the projection of the observational error distribution onto the model's attractor. Simple dynamical systems are used to demonstrate that this additional constraint is vital in order to correctly assess the rate of error growth. A naive approach in which this information about the model's 'climate' is not used can lead to significant errors. Depending on the dynamical system, error doubling times may be either underestimated or overestimated although the latter seems more likely for more realistic models. While the magnitude of these errors is not large in the simple dynamical systems examined, the impact could be much larger in more realistic forecast models.

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analog ensemble data assimilation and a method for constructing analogs with variational autoencoders;Quarterly Journal of the Royal Meteorological Society;2020-10-13

2. Impact of initial conditions on seasonal simulations with an atmospheric general circulation model;Quarterly Journal of the Royal Meteorological Society;2010-08-20

3. Impact of nonlinearities and model error on pseudo-inverse calculations;Physica D: Nonlinear Phenomena;2007-06

4. Baroclinic Flow and the Lorenz-84 Model;International Journal of Bifurcation and Chaos;2003-08

5. Dissipation in Lie–Poisson systems and the Lorenz-84 model;Physics Letters A;2001-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3