Affiliation:
1. School of Mathematics and Statistics, Central China Normal University, Wuhan, Hubei 430079, P. R. China
2. Department of Mathematics, University of Miami, Coral Gables, FL 33124-4250, USA
Abstract
It was shown in [Li & Xiao, 2007] that in a predator–prey model of Leslie type with simplified Holling type IV functional response some complex bifurcations can occur simultaneously for some values of parameters, such as codimension 1 subcritical Hopf bifurcation and codimension 2 Bogdanov–Takens bifurcation. In this paper, we show that for the same model there exists a unique degenerate positive equilibrium which is a degenerate Bogdanov–Takens singularity (focus case) of codimension 3 for other values of parameters. We prove that the model exhibits degenerate focus type Bogdanov–Takens bifurcation of codimension 3 around the unique degenerate positive equilibrium. Numerical simulations, including the coexistence of three hyperbolic positive equilibria, two limit cycles, bistability states (one stable equilibrium and one stable limit cycle, or two stable equilibria), tristability states (two stable equilibria and one stable limit cycle), a stable limit cycle enclosing a homoclinic loop, a homoclinic loop enclosing an unstable limit cycle, or a stable limit cycle enclosing three unstable hyperbolic positive equilibria for various parameter values, confirm the theoretical results.
Funder
NSFC grants
self-determined research funds of CCNU from the colleges' basic research and operation of MOE
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献