Affiliation:
1. College of Science, Donghua University, Shanghai 201620, P. R. China
Abstract
The slow–fast Leslie–Gower model with piecewise-smooth Holling type-I functional response and weak Allee effect is studied in this paper. It is shown that the model undergoes singular Hopf bifurcation and nonsmooth Hopf bifurcation as the parameters vary. The theoretical analysis implies that the predator’s food quality and Allee effect play an important role and lead to richer dynamical phenomena such as the globally stable equilibria, canard explosion phenomenon, a hyperbolically stable relaxation oscillation cycle enclosing almost two canard cycles with different stabilities and so on. Moreover, the predator and prey will coexist as multiple steady states or periodic oscillations for different positive initial populations and positive parameter values. Finally, we present some numerical simulations to illustrate the theoretical analysis such as the existence of one, two or three limit cycles.
Funder
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Natural Science Foundation of Shanghai Municipality
Publisher
World Scientific Pub Co Pte Ltd