Memory Designing Using Quantum-Dot Cellular Automata: Systematic Literature Review, Classification and Current Trends

Author:

Afrooz Sonia1,Navimipour Nima Jafari1

Affiliation:

1. Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

Abstract

Quantum-dot cellular automata (QCA) has come out as one of the potential computational structures for the emerging nanocomputing systems. It has a large capacity in the development of circuits with high space density and dissipation of low heat and allows faster computers to develop with lower power consumption. The QCA is a new appliance to realize nanolevel digital devices and study and analyze their various parameters. It is also a potential technology for low force and high-density memory plans. Large memory designs in QCA show unique features because of their architectural structure. In QCA-based architectures, memory must be maintained in motion, i.e., the memory state has to be continuously moved through a set of QCA cells. These architectures have different features, such as the number of bits stored in a loop, access type (serial or parallel) and cell arrangement for the memory bank. However, the decisive features of the QCA memory cell design are the number of cells, to put off the use of energy. Although the review and study of the QCA-based memories are very important, there is no complete and systematic literature review about the systematical analyses of the state of the mechanisms in this field. Therefore, there are five main types to provide systematic reviews about the QCA-based memories; including read only memory (ROM), register, flip-flop, content addressable memory (CAM) and random access memory (RAM). Also, it has provided the advantages and disadvantages of the reviewed mechanisms and their important challenges so that some interesting lines for any coming research are provided.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3