Affiliation:
1. Department of Electronics and Communication Engineering, Institute of Engineering and Technology, GLA University, Mathura 281406, India
Abstract
This paper presents a circuit-level technique of designing a low power and half select free 10T Static Random-Access Memory Cell (SRAM). The proposed cell works with single end read operation and differential write operation. The proposed bit-cell is free from half select issue and supports bit interleaving format. The presented 10T cell exhibits 40.75% lower read power consumption in comparison to conventional 6T SRAM cell, attributed to reduction of activity factor during read operation. The loop cutting transistors used in core latch improve write signal-to-noise margin (WSNM) by 14.94% and read decoupled structure improve read signal-to-noise margin (RSNM) by [Formula: see text] as compared to conventional 6T SRAM. In the proposed work, variability analysis of significant design parameters such as read current, stand-by SNM, and read power of the projected 10T SRAM cell is presented and compared with considered topologies. Mean value of hold static noise margin of the cell for 3000 samples is [Formula: see text] times higher than the considered D2p11T cell. The proposed 10T cell shows [Formula: see text] and [Formula: see text] narrower read access time and write access time, respectively, as compared to conventional 6T SRAM cell. Read current to bit-line leakage current ratio of the proposed 10T cell has been investigated and is improved by [Formula: see text] as compared to conventional 6T SRAM cell. The write power delay product and read power delay product of the proposed 10T cell are [Formula: see text] and [Formula: see text] lower than conventional 6T SRAM cell. In this work, cadence virtuoso tool with Generic Process Design Kit (GPDK) 45[Formula: see text]nm technology file has been utilized to carry out simulations.
Publisher
World Scientific Pub Co Pte Lt
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhanced Performance of Hybrid Photovoltaic-Based Multilevel Inverters Using Pulse Width Modulation Techniques;E3S Web of Conferences;2024
2. Comparative Analysis of Various SRAM Bit Cells for 32 nm Technology Node;Lecture Notes in Networks and Systems;2024
3. SRAM Cell Leakage Reduction Methodologies for Low Leakage Cache Memories;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06
4. Design a Gated PMOS Spillage Reduction Approach for CMOS SRAM Cell in 90nm Technology Node;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06
5. 10T SRAM cell Analysis for improved Read and Write Noise Margin;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06