FXY: A HIERARCHICAL ROUTING ALGORITHM TO BALANCE PERFORMANCE AND FAULT TOLERANCE IN NETWORKS-ON-CHIP

Author:

FAKHRALI SALEH1,ZARANDI HAMID R.12

Affiliation:

1. Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran Polytechnic, 424 Hafez Ave, Tehran, Iran, 15875-4413, Iran

2. School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Iran

Abstract

This paper presents a hierarchical fault-tolerant routing algorithm called FXY, which is a hybrid method based on flooding and XY, and can balance performance and fault tolerance based on a predefined parameter m. First, FXY partitions the whole network into different equal size square submeshes with the size of m × m. At the first level of the hierarchy, packet routing within these submeshes is performed based on flooding routing algorithm. When the packets are received at effective boundary of each submesh, XY routing is performed to route the packet inter submeshes i.e., from one submesh to the neighbor submesh which is certainly one of its neighbor nodes. Here, the size of the submesh is defined as fault-tolerant granularity. As fault-tolerant granularity is increased, the size of the submeshes will be increased, therefore the method mainly floods packets in large-size submeshes and finally packets are received at their destinations correctly. On the other hand, when fault-tolerant granularity is decreased, the method mainly routes packets as XY method, which is not fault-tolerant, but has the best performance. The method is evaluated for various packet injection rates and fault rates. The experimental results reveal that the method presents a fault-tolerant routing algorithm, and can be adjusted so that it shows better fault-tolerance and performance trade-offs compared to XY and flooding which are two end-to-end cases of having the best performance and no fault-tolerance, having the least performance and the best fault tolerance, respectively. The experimental results for an 8 × 8 NoC size, have shown that 2-FXY, which is the proposed method with fault-tolerant granularity of two, offers the best trade-off between performance and fault tolerance compared to other methods, XY, flooding and probabilistic flooding.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3