Reconfigurable Instruction-Set Application-Tuning for DSP

Author:

Mesman B.12,Zhao Q.2,Busa N.1,Leijten-Nowak K.12

Affiliation:

1. Philips Research Laboratories Eindhoven, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands

2. Department of Electrical Engineering, Eindhoven University of Technology, Den Dolech 2, Postbus 513, Eindhoven, The Netherlands

Abstract

In current System-on-Chip (SoC) design, the main engineering trade-off concerns hardware efficiency and design effort. Hardware efficiency traditionally regards cost versus performance (in high-volume electronics), but recently energy consumption emerged as a dominant criterion, even in products without batteries. "The" most effective way to increase HW efficiency is to exploit application characteristics in the HW. The traditional way of looking at HW design tends to consider it a time-consuming and tedious task, however. Given the current lack of HW designers, and the pressure of time-to-market, clearly a desire exists to fine-balance the merits and effort of tuning your HW to your application. This paper discusses methods and tool support for HW application-tuning at different levels of granularity. Furthermore we treat several ways of applying reconfigurable HW to allow both silicon reuse and the ability to tune the HW to the application after fabrication. Our main focus is on a methodology for application-tuning the architecture of DSP datapaths. Our primary contribution is on reusing and generalizing this methodology to application-tuning DSP instruction sets, and providing tool support for efficient compilation for these instruction sets. Furthermore, we propose an architecure for a reconfigurable instruction-decoder, enabling application-tuning of the instruction-set after fabrication.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FPGA-Based Hardware Accelerator for an Embedded Factor Graph with Configurable Optimization;Journal of Circuits, Systems and Computers;2018-11-12

2. Soft Core Processor Generated Based on the Machine Code of the Application;Journal of Circuits, Systems and Computers;2016-02-02

3. Hardware/Software Co-reconfigurable Instruction Decoder for Adaptive Multi-core DSP Architectures;Journal of Signal Processing Systems;2010-03-17

4. Desing and Optimization of a Programmable Instruction Decoder for DSP Architecture;2006 IEEE Workshop on Signal Processing Systems Design and Implementation;2006-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3