Soft Core Processor Generated Based on the Machine Code of the Application

Author:

Ziebinski Adam1,Swierc Stanwlaw1

Affiliation:

1. Institute of Informatics, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, Gliwice 44-100, Poland

Abstract

Currently embedded system designs aim to improve areas such as speed, energy efficiency and the cost of an application. Application-specific instruction set extensions on reconfigurable hardware provide such opportunities. The article presents a new approach for generating soft core processors that are optimized for specific tasks. In this work, we describe an automatic method for selecting custom instructions for generating software core processors that are based on the machine code of the application program. As the result, a soft core processor will contain the logic that is absolutely necessary. This solution requires fewer gates to be synthesized in the field programmable gate arrays (FPGA) and has a potential to increase the speed of the information processing that is performed by the system in the target FPGA. Experiments have confirmed the correct operation of the method that was used. After the reduction mechanism was enabled, the total number of slices blocks that were occupied decreased to 47% of its initial value in the best case for the Xilinx Spartan3 (xc3s200) and the maximum frequency increased approximately 44% in the best case for Xilinx Spartan6 (xc6slx4).

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of advanced driver assistance systems;AIP Conference Proceedings;2024

2. The Calibration of Single Beam Distance Sensors based on Machine Learning Methods;2023 IEEE International Conference on Big Data (BigData);2023-12-15

3. Introduction;Lecture Notes in Electrical Engineering;2020-11-08

4. Technology Mapping of FSM Oriented to LUT-Based FPGA;Applied Sciences;2020-06-05

5. Graph of Outputs in the Process of Synthesis Directed at CPLDs;Mathematics;2019-12-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3