Message Transmission Strategy Based on Recurrent Neural Network and Attention Mechanism in Iot System

Author:

Gou Fangfang1,Wu Jia1

Affiliation:

1. School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China

Abstract

With the popularization of the Internet of Things technology and the improvement of 5G communication technology, the influence of mobile devices on the network structure is increasing. The devices in the network are usually regarded as social users that transmit information. Because the movement of users is dynamic and random, it is more difficult for complex networks to grasp the changing rules of their topological structure. The data transmission model established by considering only the historical behavior of users can no longer meet the demand for fast transmission of large-capacity data. Based on this, this paper proposes a dynamic personalized data transmission model (GRDPS) that considers the recurrent neural network and attention mechanism. First, it uses a recurrent neural network to build users’ personalized preferences and model the user’s historical behavior. Then, GRDPS introduces an attention mechanism to dynamically weight historical user behaviors based on the user’s current message transmission. It is different from the previous methods of modeling user historical behaviors. Based on the requirements of user dynamics, GRDPS effectively considers the temporal characteristics of user historical behaviors and automatically learns the evolution law of user behaviors. Based on the demand of user randomness, GRDPS fully considers the characteristic correlation between the user’s historical behavior and current transmission demand. Finally, GRDPS combines these two points to obtain a personalized ranking of users. The simulation results show that the delivery rate of GRDPS is up to 0.95. Moreover, its data transmission delay and network overhead are better than other methods in the experiment.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3