Affiliation:
1. Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea
Abstract
A new algorithm for extracting common kernels and convolutions to maximally eliminate the redundant operations among the convolutions in binary- and ternary-weight convolutional neural networks is presented. Precisely, we propose (1) a new algorithm of common kernel extraction to overcome the local and limited exploration of common kernel candidates by the existing method, and subsequently apply (2) a new concept of common convolution extraction to maximally eliminate the redundancy in the convolution operations. In addition, our algorithm is able to (3) tune in minimizing the number of resulting kernels for convolutions, thereby saving the total memory access latency for kernels. Experimental results on ternary-weight VGG-16 demonstrate that our convolution optimization algorithm is very effective, reducing the total number of operations for all convolutions by [Formula: see text], thereby reducing the total number of execution cycles on hardware platform by 22.4% while using [Formula: see text] fewer kernels over that of the convolution utilizing the common kernels extracted by the state-of-the-art algorithm.
Publisher
World Scientific Pub Co Pte Lt
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献