A Wide-Range Low-Jitter PLL Based on Fast-Response VCO and Simplified Straightforward Methodology of Loop Stabilization in Integer-N PLLs

Author:

Kazeminia Sarang1,Hadidi Khayrollah2,Khoei Abdollah2

Affiliation:

1. Department of Electrical Engineering, Urmia University of Technology, Beheshti Ave., Urmia, West Azerbaijan 57159, Iran

2. Microelectronics Research Laboratory, Urmia University, Beheshti Ave., Urmia, West Azerbaijan 57159, Iran

Abstract

A straightforward methodology of optimizing ring-oscillator phase-locked loops (PLLs) is organized for integer-N PLLs. Then, a brief 4-step design flow is concluded to implicitly quantize the loop components for optimized loop stability. Theoretical analysis confirms that the ratio of more than 20 is required for loop filter's capacitors to yield at least 65° degrees phase margin. A wide-range voltage controlled oscillator (VCO) is proposed which is continuously controlled through two fast and slow response paths. The fast-response path improves RMS jitter due to decreasing loop delay and the slower one is an adaptive bias tuning loop, utilized to reduce the power consumption at lower operating frequencies. The RMS jitter of around 2 ps and 0.35 ps at 250 MHz and 4 GHz operating frequencies are obtained, respectively, where the 1.8 V supply voltage is subjected to about 60 mV peak-to-peak noise and reference clock suffers from 12 ps peak-to-peak jitter. Power consumption is reduced from 12.6–4 mW at 250 MHz operating frequency when the adaptive bias scheme is applied. Furthermore, simulation results confirm 35% and 50% improvement in RMS and peak-to-peak jitter at 250 MHz operating frequency, respectively, when the ratio of capacitances is increased from 10 to 20 within the loop filter. The proposed PLL can be implemented in 170 μm × 250 μm active area in 0.18 μm CMOS process.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3