A VARIABILITY-TOLERANT FEEDBACK TECHNIQUE FOR THROUGHPUT MAXIMIZATION OF TRBGs WITH PREDEFINED ENTROPY

Author:

ADDABBO T.1,ALIOTO M.1,FORT A.1,ROCCHI S.1,VIGNOLI V.1

Affiliation:

1. Information Engineering Dept., University of Siena, Via Roma, 56 Siena, 53100, Italy

Abstract

In this paper a probabilistic feedback technique to maximize the throughput of a generic True Random Bit Generator (TRBG) circuit, under a given constraint on the entropy, is discussed. In the proposed solution, the throughput of the device is dynamically and adaptively varied by an on-line entropy detector, such to obtain, with an arbitrary confidence level, an entropy greater than a given worst-case value. The approach, which has a general validity, introduces a method for making maximum use of the TRBG random bit generation capabilities, maximizing the generation throughput while preserving its entropy. It is different from the classical "open loop" TRBG design approach, in which the circuit parameter variability determines an uncertainty about the actual entropy of the device, with the proposed techniques the TRBG generation speed is varied under a given constraint on the entropy. The method can be applied to all those integrated TRBG circuits proposed in the literature and based on the uniform sampling of, e.g., random physical processes or chaotic dynamical systems.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Low-Complexity Method to Address Process Variability in True Random Number Generators based on Digital Nonlinear Oscillators;2022 IEEE International Symposium on Circuits and Systems (ISCAS);2022-05-28

2. A Stochastic Algorithm to Design Min-Entropy Tuning Controllers for True Random Number Generators;IEEE Transactions on Circuits and Systems I: Regular Papers;2022-05

3. A New Class of Digital Circuits for the Design of Entropy Sources in Programmable Logic;IEEE Transactions on Circuits and Systems I: Regular Papers;2020-07

4. Digital Nonlinear Oscillators in PLDs: Pitfalls and Open Perspectives for a Novel Class of True Random Number Generators;2018 IEEE International Symposium on Circuits and Systems (ISCAS);2018-05

5. Embedded electronic circuits for cryptography, hardware security and true random number generation: an overview;International Journal of Circuit Theory and Applications;2016-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3