Affiliation:
1. Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovićia 6, Novi Sad, 21000, Serbia
Abstract
This paper, according to the best of our knowledge, provides the very first solution to the hardware implementation of the complete decision tree inference algorithm. Evolving decision trees in hardware is motivated by a significant improvement in the evolution time compared to the time needed for software evolution and efficient use of decision trees in various embedded applications (robotic navigation systems, image processing systems, etc.), where run-time adaptive learning is of particular interest. Several architectures for the hardware evolution of single oblique or nonlinear decision trees and ensembles comprised from oblique or nonlinear decision trees are presented. Proposed architectures are suitable for the implementation using both Field Programmable Gate Arrays (FPGA) and Application Specific Integrated Circuits (ASIC). Results of experiments obtained using 29 datasets from the standard UCI Machine Learning Repository database suggest that the FPGA implementations offer significant improvement in inference time when compared with the traditional software implementations. In the case of single decision tree evolution, FPGA implementation of H_DTS2 architecture has on average 26 times shorter inference time when compared to the software implementation, whereas FPGA implementation of H_DTE2 architecture has on average 693 times shorter inference time than the software implementation.
Publisher
World Scientific Pub Co Pte Lt
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献