Real-Time Embedded Vision System for Online Monitoring and Sorting of Citrus Fruits

Author:

Nuño-Maganda Marco Aurelio1ORCID,Dávila-Rodríguez Ismael Antonio1,Hernández-Mier Yahir1ORCID,Barrón-Zambrano José Hugo2ORCID,Elizondo-Leal Juan Carlos2ORCID,Díaz-Manriquez Alan2ORCID,Polanco-Martagón Said1ORCID

Affiliation:

1. Intelligent Systems Department, Polytechnic University of Victoria, Ciudad Victoria 87138, Tamaulipas, Mexico

2. Facultad de Ingeniería y Ciencias, Universidad Autonoma de Tamaulipas, Ciudad Victoria 87000, Tamaulipas, Mexico

Abstract

Citrus fruits are the second most important crop worldwide. One of the most important tasks is sorting, which involves manually separating the fruit based on its degree of maturity, and in many cases, involves a task carried out manually by human operators. A machine vision-based citrus sorting system can replace labor work for the inspection of fruit sorting. This article proposes a vision system for citrus fruit sorting implemented on a dedicated and efficient Field Programmable Gate Array (FPGA) hardware architecture coupled with a mechanical sorting machine, where the FPGA performs fruit segmentation and color and size classification. We trained a decision tree (DT) using a balanced dataset of reference images to perform pixel classification. We evaluate the segmentation task using a pixel accuracy metric, defined as the ratio between correctly segmented pixels produced by a DT and the total pixels in the reference image segmented offline using Otsu’s thresholding algorithm. The balance between correctly classified images by color or size and their corresponding labels of that color and size evaluates the color and size classification algorithms. Considering these metrics, the system reaches an accuracy of 97% for fruit segmentation, 94% for color classification, and 90% for size classification, running at 60 fps.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference56 articles.

1. Fruits and vegetables quality evaluation using computer vision: A review;Bhargava;J. King Saud Univ.-Comput. Inf. Sci.,2021

2. Albarrak, K., Gulzar, Y., Hamid, Y., Mehmood, A., and Soomro, A.B. (2022). A deep learning-based model for date fruit classification. Sustainability, 14.

3. On-tree fruit monitoring system using IoT and image analysis;Behera;Concurr. Eng.,2021

4. Real-time visual inspection system for grading fruits using computer vision and deep learning techniques;Ismail;Inf. Process. Agric.,2021

5. A real-time grading method of apples based on features extracted from defects;Leemans;J. Food Eng.,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3