Affiliation:
1. Electronics and Micro-Electronics Laboratory (E. μ. E. L), Faculty of Sciences of Monastir, University of Monastir, Monastir, Tunisia
Abstract
Cryptographic hash functions are at the heart of many information security applications like message authentication codes (MACs), digital signatures and other forms of authentication. One of the methods to ensure information integrity is the use of hash functions, which generates a stream of bytes (hash) that must be unique. But most functions can no longer prevent malicious attacks and ensure that the information have just a hash. Because of the weakening of the widely used SHA-1 hash algorithm and concerns over the similarly-structured algorithms of the SHA-2 family, the US National Institute of Standards and Technology (NIST) has initiated the SHA-3 contest in order to select a suitable drop-in replacement. KECCAK hash function has been submitted to SHA-3 competition and it belongs to the final five candidate functions. In this paper, we present the implementation details of the hash function’s KECCAK algorithm, moreover, the proposed KECCAK design has been implemented on XILINX FPGAs. Its area, frequency, throughput and efficiency have been derived and compared and it is shown that the proposed design allows a trade-off between the maximum frequency and the area implementation.
Publisher
World Scientific Pub Co Pte Lt
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献