BI-PHASE BOX COUNTING: AN IMPROVED METHOD FOR FRACTAL ANALYSIS OF BINARY IMAGES

Author:

PERFECT E.1,DONNELLY B.1

Affiliation:

1. Department of Earth and Planetary Sciences, University of Tennessee Knoxville, Knoxville, TN 37996, USA

Abstract

Many natural systems are irregular and/or fragmented, and have been interpreted to be fractal. An important parameter needed for modeling such systems is the fractal dimension, D. This parameter is often estimated from binary images using the box-counting method. However, it is not always apparent which fractal model is the most appropriate. This has led some researchers to report different D values for different phases of an analyzed image, which is mathematically untenable. This paper introduces a new method for discriminating between mass fractal, pore fractal, and Euclidean scaling in images that display apparent two-phase fractal behavior when analyzed using the traditional method. The new method, coined "bi-phase box counting", involves box-counting the selected phase and its complement, fitting both datasets conjointly to fractal and/or Euclidean scaling relations, and examining the errors from the resulting regression analyses. Use of the proposed technique was demonstrated on binary images of deterministic and stochastic fractals with known D values. Traditional box counting was unable to differentiate between the fractal and Euclidean phases in these images. In contrast, bi-phase box counting unmistakably identified the fractal phase and correctly estimated its D value. The new method was also applied to three binary images of soil thin sections. The results indicated that two of the soils were pore-fractals, while the other was a mass fractal. This outcome contrasted with the traditional box counting method which suggested that all three soils were mass fractals. Reclassification has important implications for modeling soil structure since different fractal models have different scaling relations. Overall, bi-phase box counting represents an improvement over the traditional method. It can identify the fractal phase and it provides statistical justification for this choice.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3