Fractal Dimension of Digital 3D Rock Models with Different Pore Structures

Author:

Li Xiaobin,Wei WeiORCID,Wang Lei,Cai JianchaoORCID

Abstract

The macroscopic physical properties of rocks are profoundly determined by their microstructure, and the research of accurately characterizing rock pore structure has been extensively carried out in the fields of petroleum engineering and geoscience. Fractal geometry is an effective means of quantitatively estimating the pore structure properties of porous media. In this study, the evolution law of the fractal dimension and the quantitative relationship between the fractal dimension and porosity were investigated based on the digital 3D rock models. First, three kinds of models with gradually changing pore structures, namely sedimentation, compaction, and cementation, were systematically reconstructed by the process-based approach. Then, the fractal dimensions of the skeleton, pore, and surface of the models were computed and analyzed. Finally, the relationships among the fractal dimension, porosity, and complexity were explored qualitatively. These works reveal the changing laws of three types of fractal dimensions for different pore structure models. The pore structure differences in sedimentation model can only be distinguished by the surface fractal dimension, while both pore and surface fractal dimensions are available parameters for characterizing different pore structures in compaction and cementation models. The quantitative relations between box-counting fractal dimension and porosity were established, which can be expressed by combining linear and logarithmic formulas. The comparison of fractal dimensions of compaction and cementation models proves that fractal dimensions can distinguish the subtle pore structure differences in digital 3D rock models. Understanding the evolution law between the fractal dimension and pore structure parameters provides more references for classifying and evaluating rock pore structure features using fractal dimensions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3