Affiliation:
1. School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
Abstract
Since fractal functions are widely applied in dynamic systems and physics such as fractal growth and fractal antennas, this paper concerns fundamental problems of fractal continuous functions like cardinality of collection of fractal functions, box dimension of summation of fractal functions, and fractal linear space. After verifying that the cardinality of fractal continuous functions is the second category by Baire theory, we investigate the box dimension of sum of fractal continuous functions so as to discuss fractal linear space under fractal dimension. It is proved that the collection of 1-dimensional fractal continuous functions is a fractal linear space under usual addition and scale multiplication of functions. Particularly, it is revealed that the fractal function with the largest box dimension in the summation represents a fractal dimensional character whenever the other box dimension of functions exist or not. Simply speaking, the fractal function with the largest box dimension can absorb the other fractal features of functions in the summation.
Funder
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Geometry and Topology,Modeling and Simulation
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献